Eu(2+)-activated Sr8ZnSc(PO4)7: a novel near-ultraviolet converting yellow-emitting phosphor for white light-emitting diodes.
نویسندگان
چکیده
The crystal structure of Eu(2+)-activated Sr(8)ZnSc(PO(4))(7):Eu(2+) phosphor was refined and determined from XRD profiles by the Rietveld refinement method using a synchrotron light source. This phosphor crystallizes in the monoclinic structure with the I2/a space group. The SZSP:xEu(2+) phosphors showed a broad yellow emission band centered at 511 and 571 nm depending on the concentration of Eu(2+), and the composition-optimized concentration of Eu(2+) in the Sr(8)ZnSc(PO(4))(7):Eu(2+) phosphor was determined to be 2 mol %. The estimated crystal-field splitting and CIE chromaticity coordinates of Sr(8)ZnSc(PO(4))(7):xEu(2+) (x = 0.001-0.05 mol) were 20181-20983 cm(-1) and (0.3835, 0.5074) to (0.4221, 0.5012), respectively, and the emission band showed a redshift from 547 to 571 nm with increasing Eu(2+) concentration. The nonradiative transitions between the Eu(2+) ions in the Sr(8)ZnSc(PO(4))(7) host were attributable to dipole-dipole interactions, and the critical distance was approximately 19.8 Å. The combination of a 400 nm NUV chip with a blend of Sr(8)ZnSc(PO(4))(7):0.02Eu(2+) and BAM:Eu(2+) phosphors (light converters) gave high color rendering indices between 79.38 and 92.88, correlated color temperatures between 4325 and 7937 K, and tuned CIE chromaticity coordinates in the range (0.381, 0.435) to (0.294, 0.310), respectively, depending on the SZSP:0.02Eu(2+)/BAM:Eu(2+) weight ratio. These results suggest that the Sr(8)ZnSc(PO(4))(7):0.02Eu(2+)/BAM:Eu(2+) phosphor blend has potential applications in white NUV LEDs.
منابع مشابه
Crystal structure and Temperature-Dependent Luminescence Characteristics of KMg4(PO4)3:Eu2+ phosphor for White Light-emitting diodes
The KMg4(PO4)3:Eu(2+) phosphor was prepared by the conventional high temperature solid-state reaction. The crystal structure, luminescence and reflectance spectra, thermal stability, quantum efficiency and the application for N-UV LED were studied respectively. The phase formation and crystal structure of KMg4(PO4)3:Eu(2+) were confirmed from the powder X-ray diffraction and the Rietveld refine...
متن کاملCombinatorial approach to the development of a single mass YVO(4):Bi(3+),Eu(3+) phosphor with red and green dual colors for high color rendering white light-emitting diodes.
Instead of developing a novel red phosphor individually, this work proposes the production of white light by combining a near-ultraviolet/ultraviolet diode chip with blue and special yellow phosphors: the yellow phosphor includes the red and green components with high color saturation. The availability of this scheme is demonstrated by preparing a white light-emitting diode (WLED) with color re...
متن کاملLuminescent Properties of Calcium Halophosphate Phosphor for White Light Emitting Diode
Tb 3+ and Eu 3+ activated Ca5(PO4)Cl phosphors were synthesized by a solid state reaction. From powder X-ray diffraction analysis, Ca5(PO4)Cl with a hexagonal structure was confirmed. The excitation spectra indicate the phosphor can be excited by near ultraviolet (NUV) light, which makes it attractive for white light emitting diode (WLED) applications. When the phosphor was excited by 394 nm li...
متن کاملNovel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light-emitting diodes
White light-emitting diode (WLED) products currently available on the market are based on the blue LED combined with yellow phosphor approach. However, these WLEDs are still insufficient for general illumination and flat panel display (FPD) applications because of their low color-rendering index (CRI < 75) and high correlated color temperature (CCT = 6000 K). Although near-ultraviolet (UV) LED ...
متن کاملNew Ce3+-activated thiosilicate phosphor for LED lighting-synthesis, luminescence studies, and applications.
A new Ce(3+)-activated thiosilicate phosphor, BaLa2Si2S8:Ce(3+), was synthesized by using solid-state methods in a fused silica ampule and found to crystallize in the structure type of La2PbSi2S8. The crystal structure has been characterized by synchrotron X-ray diffraction and refined with Rietveld methods. This novel cyan-emitting phosphor can be excited over a broad range from UV to blue lig...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS applied materials & interfaces
دوره 4 12 شماره
صفحات -
تاریخ انتشار 2012